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A B S T R A C T   

A Concurrent Multi-Process Refinement method for fluid-structure interaction (FSI) problems is developed and 
applied in a SIMPLE-based monolithic implicit method (SBMIM) initially presented by Hu et al. (2016). Con
current Multi-Process Refinement method refines the computational domain of FSI simulations as several sub
domains in multi-processes with multi-grid sizes and multi-time steps. Through file mapping, velocity and 
pressure data are transmitted between two processes using proper interpolations and time advance strategy. 
Numerical implementation and algorithm procedure of the method are explained in detail. Simulations of the 
liquid sloshing in a baffled tank are conducted to give an error estimation on different grid systems using the Grid 
Convergence Index (GCI). Simulations of the dam breaking flow slamming a vertical wall are conducted to verify 
the accuracy of present methods and to discuss the area selection of the localized FSI simulation. Simulations of 
the green water impact caused by freak wave are conducted to show the performance of this method in dealing 
with multi-scale ocean engineering problems and high-frequency structural vibrations. From results, it is seen 
that Concurrent Multi-Process Refinement method shows advantages in multi-scale FSI simulations using 
monolithic FSI methods and in predicting high-frequency structural vibrations, especially with low-cost 
computational facilities.   

1. Introduction 

Numerical simulation of fluid-structure interaction (FSI) has quite a 
range of applications in scientific and engineering fields, e.g., aeroelastic 
problems (Farhat et al., 2006; Yao and Marques, 2017; Ilie, 2018; etc.), 
hydroelastic problems (De Rosis et al., 2014; Sun et al., 2015; Hu et al., 
2016; etc.) and hemodynamic problems (Torii et al., 2009; Kamensky 
et al., 2015; Chen and Luo, 2018; etc.). With the development of 
computational facilities and multi-physics theories, numerical simula
tions of FSI problems are widely conducted in different scientific and 
engineering fields nowadays, which save a large amount of physical 
experiment costs and bring in much convenience to researchers. As such, 
different numerical methods have been developed to model various 
coupled FSI phenomena when FSI effects are non-negligible. 

From the perspective of discrete strategy, FSI methods can be 

categorized into mesh-based methods and meshless method. On one 
aspect, mesh-based methods are widely used as the numerical ap
proaches in dealing with FSI problems, in which the computational 
domain is discretized by a set of grids or meshes and the governing 
equations are solved by numerical schemes such as the Finite Volume 
Method (FVM), Finite Difference Method (FDM) and Finite Element 
Method (FEM). Firstly, it is called a fully-Eulerian method if the meshes 
are fixed in space, in which additional techniques should be used to 
capture the free surface, such as Volume of Fluid (VOF) and Level Set 
(LS) (Wick, 2013; Richter, 2013; Cottet and Maitre, 2016; Hu et al., 
2016; etc.). Generally speaking, fully-Eulerian method using 
interface-capturing methods such as VOF is accurate and suitable for 
complex geometry deformation such as violent free surface evolutions, 
however, it requires solution of additional equations to capture the free 
surface interface and thus increases the numerical complexity. Secondly, 
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it is called an Arbitrary Lagrangian Eulerian (ALE) method if moving 
meshes are used to track the changing free surface, in which the meshes 
move independently to track the free surface interface deformation 
(Farhat and Lakshminarayan, 2014; Wu and Cai, 2014; Basting et al., 
2017; Calandrini and Aulisa. 2019; etc.). Space-Time method is another 
kind of moving mesh strategy to track free surface, in which the time 
variable is treated as an additional spatial coordinate to solve the gov
erning equations over a generalized space-time domain (Takizawa and 
Tezduyar, 2011; Bazilevs et al., 2013; etc.). The interface-tracking 
methods such as ALE and Space-Time show advantage in the accuracy 
of capturing moving fluid-structure interface, while they suffer mesh 
distortion when the free surface changes dramatically. Thirdly, Bound
ary Element Method (BEM) is the other kind of mesh-based method to 
simulate FSI problems, except that the computation domain is only 
meshed at the free surface and fluid-structure interface (Zhang et al., 
2013; Rodríguez-Tembleque et al., 2015; Ravnik et al., 2016; Heltai 
et al., 2017; etc.). However, BEM is usually limited to relatively simple 
geometries and physics, which makes it hard to handle strong nonlinear 
phenomena such as wave breaking and slamming. 

Moreover, meshless methods such as Smoothed Particle Hydrody
namics (SPH) method and Moving Particle Semi-implicit (MPS) method 
have found their way in recent years in dealing with FSI problems 
involving complex and nonlinear free surface evolutions. Since the fluid 
and structure particles follow exactly the motion within a fully- 
Lagrangian frame, and thus meshless methods are also called the par
ticle methods. SPH method works by dividing the fluid and structure 
into a set of discrete moving particles that follow the N–S equations and 
handling particle-particle interaction through a kernel function (Yang, 
2011; Liu et al., 2013; Hu et al., 2014; Li et al., 2015; Fourey et al., 2017; 
etc.). MPS method is similar to the SPH method, yet it applies simplified 
differential operator models solely based on a local weighted averaging 
process without taking the gradient of a kernel function (Mitsume et al., 
2014; Hwang et al., 2014; Sun et al., 2015; Hwang et al., 2016; Zhang 
and Wan, 2018; etc.). Meshless methods such as the SPH and MPS have 
advantages in describing violent free surface evolutions and avoiding 
distortion of meshes. However, meshless methods usually have difficulty 
in setting boundary conditions and suffer computational inefficiency 
compared to mesh-based methods. 

From the perspective of coupling strategy, FSI methods can be 
categorized into partitioned FSI methods and monolithic FSI methods. 
Partitioned FSI methods solve the fluid and structure domains in parti
tioned solvers and interactively link them with appropriate coupling 
approaches (Farhat and Lesoinne, 2000; Matthies and Steindorf, 2003; 
Küttler and Wall, 2008; Liu et al., 2014; etc.). Partitioned FSI methods 
are popular among researchers due to the reason that they take the best 
advantages of existing fluid solvers (Fluent and Star-CCM þ for example) 
and structure solvers (ANSYS and ABAQUS for example). Besides, par
titioned FSI methods are relatively simple in theory and easy for pro
gramming, and they perform well for weak-coupled FSI problems. 
However, partitioned FSI methods might suffer from the problem of 
computational instability and inaccuracy for strong-coupled FSI prob
lems. Monolithic FSI methods solve the fluid and structure domains 
simultaneously in a fully coupled way, in which the fluid and structure 
domains are combined to form a monolithic relation through 
fluid-structure interface boundary conditions (Le Tallec and Mouro, 
2001; Hübner et al., 2004; Heil et al., 2008; Hu et al., 2016; etc.). Using 
monolithic FSI equations, monolithic FSI methods have shown advan
tages in computational stability, efficiency as well as the accuracy for 
strong-coupled FSI problems. 

Although monolithic FSI methods are favorable for the stability and 
efficiency of calculation, they lose the advantage of efficiency under 
certain conditions. Since the complete system of nonlinear algebraic 
equations that formed from the coupled governing equations of the fluid 
and structure domains are solved as a whole, monolithic FSI methods are 
usually believed to be too computational expensive for use in large-scale 
or multi-scale problems (F€orster et al., 2007; Heil et al., 2008). In other 

words, when the simulation domain (fluid domain mainly) is large, 
monolithic methods have to solve the coupled equations in the whole 
domain at every single time step. Additionally, it is well acknowledged 
that usually, calculation of the structure domain requires a much smaller 
time step compared to the fluid domain, so that the high-frequency 
structural vibration of metal structures can be captured precisely using 
a high sampling frequency. However, the time step for the fluid and 
structure domains applied in monolithic FSI methods are usually the 
same, increasing the simulation cost enormously. Moreover, although 
many researchers have contributed a great deal in the cost-saving of the 
computational fluid dynamics (CFD) simulations using refinement 
methods (L€ohner, 2001; Plewa et al., 2005; Ahmed and John, 2015; 
Fen�andez-Tena et al., 2017; etc.) and parallel computing methods 
(Gropp et al., 2001; Amritkar et al., 2014; Crespo et al., 2015; Afzal 
et al., 2017; etc.), methods on improving efficiency of monolithic FSI 
methods are still in need of investigation, especially using low-cost 
computational facilities. 

The origin of coupling problems can well be explained by the fluid 
added mass, the significance of which determines whether a strong 
coupling is required or whether a weak coupling suffices. To solve sig
nificant added mass issues, Hu et al. (2016) presented a SIMPLE-based 
implicit method (SBMIM) for the strong coupling of FSI, which was 
validated and proved to be stable and robust under extreme simulation 
circumstances. However, several problems were found on the compu
tational efficiency when the simulation is conducted in multi-scale, and 
when the vibration frequency of the structure is high. Based on SBMIM, a 
Concurrent Multi-Process Refinement method is developed to solve the 
computational efficiency problems in this study. For multi-scale prob
lems, the structure mainly interacts with the fluid nearby, and the 
far-away fluid adds little to the interaction. Therefore, Concurrent 
Multi-Process Refinement method split the fluid in two parts: the nearby 
fluid and the far-away fluid. The nearby fluid is solved simultaneously 
with the structure, forming the Local Process. The far-away fluid is 
solved using a weak coupling with the nearby fluid, forming the Main 
Process. In this way, simulations of the nearby fluid and the far-away 
fluid can be conducted concurrently in multi-processes, localizing the 
FSI simulation area. Moreover, different grid sizes and time steps can be 
applied in multi-processes, overcoming the difficulty of using mono
lithic FSI method when very small time step is required by 
high-frequency structural vibrations of metal structures. Through file 
mappings on the computer’s memory, data of velocity and pressure 
variables are transmitted between multi-processes on the Fluid-Entry 
Boundary using Dummy Grid with proper interpolations and time 
advance strategy. In order to show the performance of Concurrent 
Multi-Process Refinement method, two refinement studies are carried 
out, namely a liquid sloshing case and a dam breaking impact case. 
Simulations of the liquid sloshing in a baffled tank are conducted to give 
an error estimation regarding grid sizes and time steps using a GCI 
method. Simulations of the dam breaking flow slamming a vertical wall 
is conducted to verify the accuracy of present methods and to discuss the 
selection of localized FSI simulation area. Simulations of the green water 
impact a deck-house caused by freak wave are conducted to show the 
performance of the method in balancing accuracy and efficiency when 
dealing with practical multi-scale ocean engineering problems with 
high-frequency structural vibrations. Through the three validation and 
application cases, it is seen that Concurrent Multi-Process Refinement 
method shows advantages in multi-scale FSI simulations using mono
lithic FSI methods and in prediction of high-frequency structural vi
brations. Through the calculations of the added mass in the dam 
breaking case and the green water impact case, it is also seen that the 
method is quite stable and robust for strong-coupled FSI issues, in which 
the added mass is significant. 

By applying Concurrent Multi-Process Refinement method, the effi
ciency and accuracy of FSI simulations are balanced and improved, 
especially for FSI simulations using low-cost computational facilities like 
ordinary personal computers. Pure-CFD simulations which solves the 
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N–S equations and FSI simulations which solves the strong-coupled FSI 
equation are divided in multi-processes. Different grid sizes and time 
steps can be applied in multi-processes concurrently to meet the accu
racy requirement of strong-coupled FSI area and the efficiency 
requirement of the others. More importantly, the very small time step 
required by the high-frequency structural vibrations can be avoided in 
the Pure-CFD processes where FSI plays a negligible role. However, it 
needs to mention that since the basic idea of Concurrent Multi-Process 
Refinement method lies in the splitting of the fluid domain, the area 
selection of Local Process should be careful so that the origin of strong 
coupling (e.g. the added mass) would not be under-estimated. 

2. Fluid-structure interaction method 

2.1. Governing equations 

The fluid refers to liquid, which is assumed to be viscous, Newtonian 
and incompressible. By applying the VOF-Youngs method (Youngs, 
1982) to reconstruct the free surface, governing equations of the fluid 
include the continuity equation, the momentum conservation equation 
and the fluid volume transportation equation, written as follows: 

r ⋅ ðθuÞ ¼ 0 (2.1)  

∂u
�

∂t þr⋅ðu�uÞ ¼ r⋅σf�ρf þ f f (2.2)  

∂
�
θFf � � ∂t þr⋅

�
θuFf � ¼ 0 (2.3)  

where u, ρf , f f and σf are the velocity, density, body force and Cauchy 
stress tensor of the fluid. Ff denotes the transportation volume of the 
fluid, while the ratio of the volume occupied of fluid is described byθ, 
which equals 1 where fluid can flow across the mesh boundary freely 
and 0 where the mesh boundary is solid (Lin, 2007). 

Governing equation of the structure is given by the structure mo
mentum equation: 

ρs €w¼r⋅σs þ f s (2.4)  

where w, ρs, f s and σs are the displacement, density, body force and first 
Piola-Kirchhoff stress tensor of the structure. 

On the fluid-structure interface, velocity and traction force of the 
fluid domain must agree with the structure domain: 

u¼ _w (2.5)  

σf nf ¼σsns (2.6)  

where nf and ns are the unit outward normal vector of the fluid 
boundary and the unit outward normal vector of the structure boundary. 

2.2. Fluid-structure coupling 

A self-developed solver is utilized for FSI simulations, which solves 
the incompressible Navier-Stokes (N–S) equations under two- 
dimensional flow conditions in CFD simulations, and solves the mono
lithic FSI equation in FSI simulations. 

Finite element method (FEM) is used to discretize two-dimensional 
Euler beams simplified from structures that meet the cylindrical 
bending assumption (Timoshenko and Woinowsky-Krieger, 1959). The 
structure here is assumed to be under small displacement and within the 

elastic range. The structural dynamic equation can be written as: 

M €wþC _wþKw ¼ F (2.7)  

where M is the global matrix of mass, C is the global matrix of damping, 
K is the global matrix of stiffness, F is the nodal force vector. Implicit 
Houbolt scheme (Houbolt, 1950), which has been proved uncondition
ally stable (Newmark, 1959; Johnson, 1966; Nickel, 1971), is used to 
calculate the structural velocity and acceleration at time t þ Δt with 
time step Δt, and thus Eq. (2.7) is rewritten as:   

From Eqs. (2.5) and (2.6), the relation between fluid velocity utþΔt
couple 

on the fluid-structure interface and structure displacement w, and the 
relation between the structure nodal force FtþΔt and fluid pressure PtþΔt

couple 

on fluid-structure interface are given as: 

utþΔt
couple ¼Acouple 1 _wtþΔt (2.9)  

FtþΔt ¼ Acouple 2PtþΔt
couple (2.10)  

where Acouple 1 and Acouple 2 are the conversion matrices generated in 
coupling calculation. Note that on fluid-structure interface, only the 
pressure-related force is considered. Viscous effect is neglected at fluid- 
structure interface since it plays an unimportant role in the simulation 
cases that this FSI method is designed for. 

SIMPLE method (Patankar and Spalding, 1972) is used to solve the 
fluid governing equations. Finite difference method (FDM) is used to 
discretize the fluids, while a fixed staggered-grid (Eulerian grid) system 
is used within which the pressure is defined at the grid center and the 
velocity is defined at the grid boundaries’ center. Central difference 
scheme (CDS) is used for the pressure gradients and diffusion terms, and 
the combination of the central difference and upwind difference scheme 
(UDS) is used for advection terms. 

Using a two-step projection method on Eq. (2.2), tentative velocity is 
expressed as: 

ð~utþΔt
� utÞ

�
Δt ¼ f f ;tþΔt þ

�
νr2ut � r ⋅ ðut �utÞ

�
(2.11)  

where ν is the kinematic viscosity, ~utþΔt is the tentative velocity at time 
tþ Δt, ut is the true velocity at time t. The tentative velocity is further 
updated as the true velocity with the use of correct fluid pressure at time 
t þ Δt using relation as: 

ðutþΔt � ~utþΔt
Þ

Δt
¼ �

rptþΔt

ρf (2.12)  

where ptþΔtis the fluid pressure at time tþ Δt, obtained by solving 
pressure Poisson equation as: 

r2
�

θ
ptþΔt

ρf

�

¼r⋅
�

θ
~utþΔt

Δt

�

(2.13) 

Here, fluid pressure ptþΔt in Eq. (2.13) can be solved using a suc
cessive over relaxation (SOR) method. 

For the fluid grids with fluid-structure interfaces on their boundaries, 
the interfaces can be treated as mobile solid boundaries (Hu et al., 
2016), therefore, the SIMPLE-based pressure Poisson equation can be 
modified by replacing the tentative velocity in Eq. (2.13) with the mo
bile solid boundary velocity: 

�
2M
�

Δt2 þ 11C
�
ð6ΔtÞ þK

�
wtþΔt ¼ FtþΔt þ

�
5M
�

Δt2 þ 3C
�

Δt
�
wt ��

4M
�

Δt2 þ 3C
�
ð2ΔtÞ

�
wt� Δt þ

�
M
�

Δt2 þ C
�
ð3ΔtÞ

�
wt� 2Δt (2.8)   
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PtþΔt
couple ¼Bcouple

�
utþΔt

couple

�
(2.14)  

where Bcouple is the conversion matrix function formed in coupling 
calculation. 

Through simultaneous equations of Eq. (2.9), Eq. (2.10) and Eq. 
(2.11), structure nodal force is obtained as: 

FtþΔt ¼ Acouple 2Bcouple
�
Acouple 1 _wtþΔt� (2.15) 

Combining Eq. (2.15) with Eq. (2.8), the coupled structural dynamic 
equation is written as:   

Here, the relation between w and _w are given as _wtþΔt ¼

ð11wtþΔt � 18wt þ9wt� Δt � 2wt� 2ΔtÞ=6Δt following the Houbolt scheme. 
Eq. (2.16) is a monolithic FSI equation solved in an implicit way. Within 
a single iteration step Δt, the fluid and structure domains are solved 
simultaneously. More detailed derivations, deductions, validations and 
convergence tests of the monolithic FSI equation can be found in Hu 
et al. (2016). 

Fig. 1 gives the flow chart of the monolithic FSI method, explained as 
the following:  

(1) Module ‘Set Initial Condition’ creates meshing of the fluids and 
structures and sets the initial simulation parameters.  

(2) At each time step of the FSI simulation, tentative velocity of the 
fluid is obtained in module ‘Calculate Temp Velocity’ using a two- 
step projection following the SIMPLE method.  

(3) Matrices assembling and coupled FSI equation solving of Eq. 
(2.16) using the Houbolt scheme are conducted in module ‘Solve 
Coupled FSI Equation’.  

(4) After solving the coupled FSI equation, the structural response is 
calculated, while the fluid velocity at fluid-structure interface is 
obtained through Eq. (2.9) in module ‘Get Structure Response’.  

(5) Then in module ‘Correct Fluid Pressure’, the fluid pressure is 
corrected through SOR iteration of Eq. (2.14) using the obtained 

velocity at fluid-structure interface until convergence. Note that 

criterion max
i;j

�
�
�pmþ1

i;j � pm
i;j

�
�
� < 0:001ρf is applied in this FSI method, 

where pmþ1
i;j and pm

i;j denote the pressures of the (m þ 1)th and mth 
iterations.  

(6) After the fluid pressure converges, real velocity of the fluid is 
updated using the corrected fluid pressure in module ‘Update 
Fluid Velocity’, while the fluid free surface is reconstructed using 
the VOF method.  

(7) Updating the time to the next step, the procedure goes back to 
module ‘Calculate Temp velocity’ again and the simulation time 
proceeds to the next step. 

Fig. 1. Flow chart of the SIMPLE-based monolithic implicit method.  

Fig. 2. Comparison of traditional refinement and Multi-Process Refinement method.  

�
2M
�

Δt2 þ 11C
�
ð6ΔtÞ þK

�
wtþΔt ¼ Acouple 2Bcouple

�
Acouple 1 _wtþΔt�þ

�
5M
�

Δt2 þ 3C
�

Δt
�
wt ��

4M
�

Δt2 þ 3C
�
ð2ΔtÞ

�
wt� Δt þ

�
M
�

Δt2 þ C
�
ð3ΔtÞ

�
wt� 2Δt (2.16)   
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3. Concurrent Multi-Process Refinement method 

3.1. Descriptions 

In Section 2, the monolithic FSI method is briefly introduced, which 
is capable of solving various strong-coupled FSI problems. However, 
when encountered with realistic FSI simulation requirements such as 
simulations in multi-scale and with high-frequency structural vibrations, 

the FSI method is faced with several problems on the efficiency and 
accuracy of computations, listed as follows. 

Firstly, for the FSI simulation using a monolithic FSI equation, so
lution of the fluid domain is connected with the structure domain 
inseparably, which means that the simulation is conducted solving the 
monolithic FSI equation in the whole computational domain. Un
doubtedly this would lead to extra computational costs by changing the 
N–S equations into the coupled FSI equations, since the conversion 

Fig. 3. Sketch of Concurrent Multi-Process Refinement method, taking a wave-induced green water event as example.  

Fig. 4. Variable transmission of the fluid domain between Main Process and Local Process.  
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matrices formed in the monolithic FSI equation Eq. (2.16) could be 
difficult and inefficient to solve. 

Secondly, complex structures usually complicate the boundary of the 
fluid domain, around where grids must be refined to achieve computa
tional accuracy. Traditional refinement method solves the large-scale 
matrix assembled by the governing equations in all the coarse and fine 
grids of the fluid domain within a single time step. However, it is know 
that solving a large-scale matrix is rather inefficient compared to solving 
several small-scale matrices, especially with ordinary computational 
facilities like personal computers. 

Thirdly, maximum time step in the fluid domain is usually defined 
according to the Courant number Cmax ¼ ui;jðΔt =ΔxÞ , where ui;j is the 
fluid velocity in every grids and Δt and Δx are the corresponding time 
step and grid length (John and Anderson, 1995; Godderidge et al., 
2006), therefore, it is seen that finer grids require smaller time step and 
coarser grids fit for larger time step. However, existing monolithic FSI 
methods assign the same time step, fixed or adaptive, to all the grids in 
the fluid domain regardless of the fact that only local refined grids need 
smaller time step, which increases the computational cost enormously. 

Lastly, for FSI problems with relatively large rigidity structures (such 
as metal structures), time step in the structure domain would be 
significantly reduced compared to the time step in the fluid domain, so 
that the high-frequency structural vibrations could be captured accu
rately using high sampling frequencies. The ratio of time step between 
the fluid and structure domains might be up to 20 times or larger, 
however, for monolithic FSI equations like Eq. (2.16), it is impossible to 
separate the time step between the fluid and structure domains. 

In this Section, a Concurrent Multi-Process Refinement method is 
developed, which is capable of solving the monolithic FSI problems 
described above. Being different from traditional refinement method, 
Concurrent Multi-Process Refinement method divides the computa
tional domain into several subdomains in different processes, shown in 
Fig. 2. Multi-processes exist at the same time and are computed 
concurrently with corresponding multi-grid sizes and multi-time steps, 
where data of velocity and pressure variables are transmitted between 
two processes through Fluid-Entry Boundaries and Dummy Grids. By 
applying the method, efficiency and accuracy of monolithic FSI 

simulations are balanced in four aspects. Firstly, the monolithic FSI 
equation is solved within the FSI process, while the N–S equations are 
solved in other processes where FSI is not included. Secondly, the fluid 
domain is divided into several subdomains and simulated in multi- 
processes with different grid sizes concurrently, which decomposes the 
total matrix into several smaller matrices in a single time step compared 
with the traditional refinement method. Thirdly, larger and smaller time 
steps are applied in different simulation processes, which guarantees the 
simulation efficiency in coarser grids and the simulation accuracy in 
finer grids simultaneously. Lastly, the high sampling frequency (thus 
small time step) requirement in the structure domain caused by the high- 
frequency structural vibrations is avoided in the fluid domain that is far 
from the FSI area and have little influence on the FSI coupling. 

3.2. Numerical implementation 

In order to explain the numerical implementation of Concurrent 
Multi-Process Refinement method developed in this paper, a specific 
illustration of wave-structure interaction is given. In Fig. 3, the inter
action problem is divided into two processes, where generation and 
propagation of the wave are simulated in Main Process with a larger grid 
size and time step, and the interaction between wave and structure are 
simulated in Local Process with a smaller grid size and time step. 

In Concurrent Multi-Process Refinement method, the data between 
Main Process and Local Process are linked and transmitted through the 
Fluid-Entry Boundary which is similar to the wave-making boundary 
(velocity inlet) in numerical implementation of wave generation, shown 
in Fig. 3 as the red solid lines. Dummy Grids are introduced in Main 
Process, shown as the yellow-colored grids in Fig. 3. As its literal 
meaning, Dummy Grids are ‘virtual’ grids, acting as virtual boundary of 
the fluid domain in Main Process. Fluid-Entry Boundary and Dummy 
Grids are the bridge of data transmissions, through which relations of 
variables of fluid velocity components and pressure between Main 
Process and Local Process are built bi-directionally. In particular, 
Dummy Grids act as the boundary condition for Main Process, while the 
column grids on Fluid-Entry Boundary within Dummy Grids act as the 
boundary condition for Local Process. 

Fig. 5. Sketch of time advance in Main Process and Local Process.  
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The data transmissions of variables between Main Process and Local 
Process are illustrated in Fig. 4. In Main Process, assuming the fluid 
velocity on the right, left, top and bottom boundary of Dummy Grid 
ði; jÞmain to be Uright

ði;jÞmain
, Uleft
ði;jÞmain

, Vtop
ði;jÞmain 

and Vbottom
ði;jÞmain

, while the fluid pressure 
at center of the gird to be Pði;jÞmain

. In Local Process, assuming the fluid 

velocity on the right and top boundary of grid ði; jÞlocal to be uright
ði;jÞlocal

, 

uleft
ði;jÞlocal

, vtop
ði;jÞlocal 

and vbottom
ði;jÞlocal

, while the fluid pressure at center of the gird to 
be pi;j. 

On one hand, the simulation data transmit from Main Process into 
Local Process as: 

uright
ði;jÞlocal

¼Uleft
ði;jÞmain

⋅
Nh � i

Nh
þ Uright

ði;jÞmain
⋅

i
Nh

(3.1)  

uleft
ði;jÞlocal

¼Uleft
ði;jÞmain

⋅
Nh � ði � 1Þ

Nh
þ Uright

ði;jÞmain
⋅
ði � 1Þ

Nh
(3.2)  

vtop
ði;jÞlocal

¼Vbottom
ði;jÞmain

⋅
Nv � j

Nv
þ Vtop

ði;jÞmain
⋅

j
Nv

(3.3)  

vbottom
ði;jÞlocal

¼Vbottom
ði;jÞmain

⋅
Nv � ðj � 1Þ

Nv
þ Vtop

ði;jÞmain
⋅
ðj � 1Þ

Nv
(3.4)  

pði;jÞlocal
¼Pði;jÞmain

þ ρf g
Nv � ð2j � 1Þ

2
Δylocal (3.5) 

On the other hand, the simulation data transmit from Local Process 
into Main Process as: 

Uright
ði;jÞmain

¼
2

Nh þ 1
XNh

i¼1

�

uright
ði;jÞlocal

⋅
i

Nh

�

(3.6)  

Uleft
ði;jÞmain

¼
2

Nh þ 1
XNh

i¼1

�

uleft
ði;jÞlocal

⋅
Nh � ði � 1Þ

Nh

�

(3.7)  

Vtop
ði;jÞmain

¼
2

Nv þ 1
XNv

j¼1

�

vtop
ði;jÞlocal

⋅
j

Nv

�

(3.8)  

Vbottom
ði;jÞmain

¼
2

Nv þ 1
XNv

j¼1

�

vbottom
ði;jÞlocal

⋅
Nv � ðj � 1Þ

Nv

�

(3.9)  

Pði;jÞmain
¼

1
NhNv

XNh

i¼1

XNv

j¼1
pði;jÞlocal

(3.10) 

Here, Nh ¼ Δxmain=Δxlocal and Nv ¼ Δymain=Δylocal are the horizontal 
and vertical ratio of the mesh size in Main Process against the one in 
Local Process, in which Δxmain and Δymain denote the grid length in 
horizontal and vertical directions in Main Process; Δxlocal and Δylocal 

denote the grid length in horizontal and vertical directions in Local 
Process. 

Once the data transmission is completed from one process to the 
other, the transmitted values update the variables in Dummy Grids at 
Fluid-Entry Boundary. When data are transmitted from Local Process to 
Main Process, variables ðUright

ði;jÞmain
;Uleft
ði;jÞmain

;Vtop
ði;jÞmain

;Vbottom
ði;jÞmain

;Pði;jÞmain
Þ are 

updated by ðuright
ði;jÞlocal

; uleft
ði;jÞlocal

; vtop
ði;jÞlocal

; vbottom
ði;jÞlocal

; pði;jÞlocal
Þ through Eq. (3.6)– 

(3.10). Then variables such as velocity and pressure in Main Process are 
calculated using the updated new boundary condition of Dummy Grids. 
When data are transmitted from Main Process to Local Process, ðuright

ði;jÞlocal
;

uleft
ði;jÞlocal

; vtop
ði;jÞlocal

; vbottom
ði;jÞlocal

; pði;jÞlocal
Þ are updated by ðUright

ði;jÞmain
;Uleft
ði;jÞmain

;Vtop
ði;jÞmain

;

Vbottom
ði;jÞmain

; Pði;jÞmain
Þ through Eq. (3.1)-(3.5). Then velocity and pressure in 

Local Process are calculated using the new boundary condition of the 
column grids on Fluid-Entry Boundary within Dummy Grids. 

The descriptions above explains the data transmission between 
multi-processes in ‘one time step’. Note that ‘one time step’ here denotes 
the last time step in Local Process when data are transmitted from Local 
Process to Main Process, or the last time step in Main Process when data 
are transmitted from Main Process to Local Process. To better explain the 
time advance strategy, Fig. 5 gives the sketch of the time relation be
tween Main Process (MP) and Local Process (LP) temporally. Firstly, 
assuming the computational domain at t ¼ t1 is already known, while 
the selected time steps for Main Process and Local Process are ΔtMP and 
ΔtLP respectively. Also assuming the relation of ΔtMP ¼ NΔtLP exist, 
where N is the ratio between time steps. Through Fluid-Entry Boundary 
and Dummy Grids, data from Main Process at t ¼ t1 are transmitted to 
Local Process and the boundary condition of Local Process is updated. 
Secondly, simulations from t ¼ t1 to t ¼ t1 þ NΔtLP are carried out in 
Local Process, after which data from Local Process at t ¼ t1 þ NΔtLP are 
transmitted to Main Process and the boundary condition of Main Process 
is updated. Note that relation t ¼ t1 þ NΔtLP ¼ t1 þ ΔtMP exist. Thirdly, 
the simulation at t ¼ t1 þ ΔtMP is conducted, which means that the 
simulation of Main Process proceeds to the next time step. This time 

Fig. 6. Flow chart of Concurrent Multi-Process Refinement method applied in FSI simulations.  
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advance relation starts and ends at the certain time when the multi- 
process refinement is applied and canceled. Note that the data ex
change between Main Process and Local Process at Fluid-Entry Bound
ary and Dummy Grids, which are within the pure fluid domain rather 
than at the fluid-structure interface. Moreover, the resolution of the fluid 
and structure parts are still solved as one entity in Local Process. 
Therefore, Concurrent Multi-Process Refinement method do not change 
the fact that the FSI method is a monolithic method rather than a par
titioned method, the latter of which solve the fluid and structure parts in 
different entities using staggered approach or non-staggered sub-itera
tion/synchronization techniques (Felippa et al., 2001). 

3.3. Algorithm procedure 

The FSI method in Section 2 and Concurrent Multi-Process Refine
ment method is compiled using Visual Basic language and operated in a 
computational station which consists of an 8-core 3.60 GHz CPU and a 
12.0 GB RAM. Data transmission of Concurrent Multi-Process Refine
ment method is based on the File Mapping approach provided by Visual 
Basic, which creates mapping relations from disk files to computer 
memory. Using this approach, the link between different processes can 
be built by transmitting data through visiting memory rather than disk 
files, leading to an increase of the data access speed among processes. 
When Concurrent Multi-Process Refinement method operates, it first 
creates the file mapping of each process, and then built the links of data 
transmission between processes by directly visiting memory. The 
received data in each process update the boundary conditions for sim
ulations, while the data obtained through simulations are further saved 
in memory for the next data transmission. 

Fig. 6 gives the flow chart of Concurrent Multi-Process Refinement 
method applied in the monolithic FSI method SBMIM, from which the 
programming procedure of the algorithm is illustrated. As can be seen, 
procedure Concurrent Multi-Process Refinement method is composed of 
the following steps (1)–(9). Note that Fig. 6 and steps (1)–(9) takes a 
two-process simulation as example, however, Concurrent Multi-Process 
Refinement method is able to operate with more than two processes.  

(1) The CFD/FSI simulation in one process continues until simulation 
time reaches time t when concurrent multi-process simulations 
are set to begin.  

(2) At time t, multi-process simulations begin with ‘Set Initial 
Memory File Mapping’ module, which initializes the names and 
parameters of file mappings and disk files for the variables and 
mesh grids in different processes.  

(3) ‘Create Memory File Mapping for Processes’ module creates the 
file mappings between disk files and the computer memory for 
processes that need to be linked for data transmissions. In this 
module, different mapping addresses between each two multi- 
processes are created and assigned in memory respectively, 
where data between two multi-processes can be visited and 
transmitted.  

(4) When file mappings of the multi-processes are built, the CFD/FSI 
simulation can be carried out in multi-processes using the method 
in Section 2. Taking a two-process division as example, the 
simulation is divided into one Main Process (MP) with time step 
ΔtMP and one Local Process (LP) with time step ΔtLP. Note that 
ΔtMP > ΔtLP.  

(5) Assuming the simulation at time t in Main Process has already 
been finished, data for transmission at this time are obtained from 
the simulation results of Main Process in ‘Get MP Data at t’ 
module and sent to the computer memory in ‘Send MP Data’ 
module through the file mapping created before.  

(6) Local Process accesses the data from Main Process in ‘Receive MP 
Data’ module by visiting the memory and is solved with time step 
ΔtLP. The simulation of Local Process is conducted until the 
simulation time reaches t þ ΔtMP when the simulation of Main 

Process should be continued to update the boundary conditions 
for Local Process.  

(7) Data of variables of Local Process at t þ ΔtMP are obtained in ‘Get 
LP Data at tþ ΔtMP’ module and sent to Main Process in ‘Send LP 
Data’ module through file mapping.  

(8) Received by Main Process in ‘Receive LP Data’ module, data from 
Local Process updates the boundary conditions for Main Process. 
Then the simulation of Main Process is conducted with time step 
ΔtMP until the simulation time reaches tþ 2ΔtMP.  

(9) Looping the steps from (5)–(8) until the simulation time reaches 
the total simulation time tMulti� over set for multi-process simula
tions, the multi-process simulation is over and the CFD/FSI in one 
process continues from time tMulti� over. 

3.4. Advantages and limitations 

Advantages of Concurrent Multi-Process Refinement method are 
analyzed first. As we know, FSI methods can be divided into two cate
gories considering the coupling manners, which are the partitioned FSI 
methods and monolithic FSI methods. Partitioned FSI methods solve the 
fluid and structure domains respectively and iteratively. In each time 
step, the fluid solver predicts the position, velocity and pressure of all 
grids or particles on the fluid-structure interface within the fluid 
domain. Then the fluid force is acted on the structure domain to 
calculate the deformation and velocity of the structure, while the 
updated variables of the deformable structure is applied back to the fluid 
domain to correct the fluid velocity and pressure until convergence. As a 
result, the total iteration number would be the iteration number of fluid 
(denoted as M1) multiply the iteration number of structure (denoted as 
N1), that is M1 � N1. On another aspect, monolithic FSI methods such as 
SBMIM establish a monolithic FSI equation using the continuity relation 
between the fluid and structure domains. In each time step, variables of 
the fluid and structure domains such as the velocity and pressure of fluid 
grids, and deformation and velocity of structure elements are solved 
using the monolithic FSI equation at the same time. As a result, the total 
iteration number would be the iteration number of solving the mono
lithic FSI equation. Since SBMIM constructs the monolithic FSI equation 
through the pressure Poisson equation of the fluid using mobile solid 
boundaries (Hu et al., 2016), the total iteration number would be the 
iteration number of the fluid (denoted as M2). Usually, a relation of 
M2<M1 �N1 is expected since M1 and M2 are close in value, and thus the 
monolithic FSI method in this paper is relatively computational inex
pensive compared to the partitioned FSI methods. 

The monolithic FSI equation usually complicates the governing 
equations, making it more difficult to get the solution compared with 
pure-CFD simulations. In addition, the monolithic FSI equation requires 
a unified time step for both the fluid and structure domains, although the 
time step of the fluid domain according to the Courant number criterion 
can be much larger than the time step of the structure domain when a 
high sampling frequency is requirement for high-frequency structural 
vibrations. To deal with these two problems, Concurrent Multi-Process 
Refinement method divides the large-scale computational domain into 
processes of FSI simulations and pure-CFD simulations. The dimension 
of the monolithic FSI equation is reduced by localizing the FSI area, 
while the unnecessary unified time step is avoided by different time 
steps. To solve the monolithic FSI equation, traditional refinement 
(shown in Fig. 2-a) requires a simulation time of T2 �M2, where T2 is the 
time step number and M2 is the iteration number in one time step. Multi- 
process refinement (shown in Fig. 2-b) requires a simulation time of (T2/ 
RML) � MM þ T2 � ML, where MM and ML are the iteration number of 
Main Process and Local Process in one time step, and RML is the ratio of 
time step of Main Process against time step of Local Process. Since 
M2>MM þ ML is expected due to the larger application area of the 
monolithic FSI equation using traditional refinement, it is easy to found 
that T2 � M2>(T2/RML) � MM þ T2 � ML, indicating that Concurrent 
Multi-Process Refinement method can further lower the computation 
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cost in monolithic FSI methods compared to the traditional refinement 
method. 

There are also some limitations of Concurrent Multi-Process 
Refinement method. For simulations containing FSI and elastic re
sponses of structures, when the computation domain is divided into 
Main Process and Local Process, the monolithic FSI equation is only 

solved in Local Process, while pure-CFD simulation is conducted in Main 
Process. As a result, FSI effects, mainly the added mass effects, are 
actually not included in Main Process, narrowing the area actually 
influenced by FSI. Therefore, it should be noted that the area selection of 
Local Process should be careful, so that the FSI effects would not be 
under-estimated. For simulations containing FSI and elastic responses of 
structures, it is recommended that a refinement study on area selection 
should be carried out first to determine the Local Process area near the 
elastic structures and the Main Process area far from the elastic struc
tures. In this paper, a detailed refinement study on Local Process se
lection can be found in Section 4.2, in which an error estimation is 
carried out. Also, compared with massive parallel FSI simulations using 
super computers, Concurrent Multi-Process Refinement method might 
lose its advantage in efficiency since this method is designed for low-cost 
computational facilities like ordinary personal computers. 

Fig. 7. The liquid sloshing in a tank with a baffle (Top Panel) and the division of different processes (Bottom Panel).  

Table 1 
Grid sizes and time steps in the liquid sloshing case.  

Simulation Case Grid size Time step Computational cost 

Coarse grid 0.0100 m 0.00100s 1 h 
Medium grid 0.0050 m 0.00050s 7 h 
Fine grid 0.0025 m 0.00025s 66 h 
Multi-process Main Process 0.0100 m 0.00100s 29 h 

Local Process A 0.0050 m 0.00050s 
Local Process B 0.0025 m 0.00025s  

Fig. 8. Pressure time histories of pressure for the coarse, medium and fine grids at pressure monitors (a) P1, (b) P2, (c) P3; and (d) the relative standard error of the 
coarse and medium grids. 
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4. Refinement study 

In this section, two cases of refinement study are introduced using 
Concurrent Multi-Process Refinement method applied in the monolithic 
FSI method, including the liquid sloshing in a baffled tank and the dam 
breaking flow slamming an elastic vertical wall. The liquid sloshing case 
shows the performance of Concurrent Multi-Process Refinement method 
in CFD simulation with nonlinear free surface evolutions, and gives an 
error estimation on different refinements including coarse, medium, fine 
and multi-process grids. The dam breaking case compares the results by 
present methods and by previous literatures, and gives an error esti
mation on refinements with different Local Process areas. 

4.1. Liquid sloshing in a baffled tank 

The liquid sloshing in a baffled tank is one typical CFD case which 
has been widely investigated and considered suitable for the refinement 
study. The top panel of Fig. 7 gives the illustration of the liquid sloshing 
in a tank with a baffle, which is designed similar to the one in Jung et al. 
(2012). The tank is 0.8 m in length and 0.5 m in height, while the liquid 
(which is water) in the tank is 0.35 m in depth. A fixed rigid 0.28 m-long 
baffle is clamped at the middle of the tank bottom; three pressure gauges 
are installed at the left (P1), right (P2) wall of the tank and left-top (P3) of 
the baffle to monitor fluid pressures. The tank is under pure-surge mo
tion, defined by the sinusoidal function of: 

Xs¼As sinðωtÞ (4.1)  

where Xs is the surge motion transversally. As and ω are the amplitude 
and frequency of the surge motion, which are fixed as As ¼ 0:02m and 
ω ¼ 5:82rad=s respectively. Physical properties within the fluid domain 
are chosen as: fluid density 1000 kg/m3, fluid kinematical viscosity 
0.000001145 m2/s, air pressure 101263.4Pa, acceleration of gravity 
9.81 m/s2. 

Following the Courant number criterion, three groups of grid sizes 
and time steps are adopted to give a grid-independence test, which are 
the coarse, medium and fine grids, shown in Table 1. In addition, a 
multi-process grid using Concurrent Multi-Process Refinement method 
is applied to compare with the coarse, medium and fine grids, in which 
the three processes are named as Main Process, Local Process A and 
Local Process B, shown in the bottom panel of Fig. 7. The total simula
tion time for the coarse, medium, fine and multi-process grids are 6s, 
including five whole sloshing periods. 

Firstly, a grid-independence test on the liquid sloshing are conducted 
with the coarse, medium and fine grids, which cost 1 h, 7 h and 66 h of 
computation respectively. The time histories at pressure monitors P1, P2 
and P3 are shown in Fig. 8-a, Fig. 8-b and Fig. 8-c, indicating that a 
rather satisfactory agreement among the three simulation cases. How
ever, using the relative standard error (RSE), deviations of the pressure 
results with coarse and medium grids are obtained based on the pressure 
results with the fine grid, given in Fig. 8-d. It is seen that the RSEs of the 
coarse grid are 12.3%, 11.7% and 9.3% at P1, P2 and P3, while the RSEs 
of the medium gird are 6.8%, 7.8% and 4.8% at P1, P2 and P3. By halving 
the grid size and time step from coarse to medium grid, the relative 
standard error is reduced by more than 42% averagely, but the 
computational cost is increased by about seven times. 

It was stated that a recommended method for grid refinement study 
and error estimation is called the Grid Convergence Index (GCI) method 
(Celik et al., 2008), which was based on the Richardson Extrapolation 
(Richardson, 1911). GCI is a measure of the percentage of how far the 

Table 2 
Error estimation on coarse, medium and fine grids using GCI.  

Location Mean Pressure/Pa p GCI21 GCI32 

Fine Medium Coarse 

P1 86.3 85.4 83.4 1.15 1.1% 2.4% 
P2 94.5 93.3 91.0 0.94 1.7% 3.4% 
P3 572.8 590.5 632.1 1.23 2.9% 6.5%  

Fig 9. Snapshots of the liquid sloshing in Main Process, Local Process A and Local Process B using Concurrent Multi-Process Refinement method.  
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computed value is away from the asymptotic numerical value, and has 
been evaluated over several hundred cases. Procedures and formulas of 
the GCI method can be found in many previous papers (Roache, 2003; 
Celik et al., 2008; Park et al., 2015; etc.), and thus they are not listed 
here. 

Table 2 shows the mean values of the key variable, which is pressure, 
obtained from the fine grid (subscript 1), medium grid (subscript 2) and 
coarse grid (subscript 3) solutions, and the results of corresponding 
GCIs. Note that GCI21 means the GCI of medium grid against fine grid, 
while GCI32 means the GCI of coarse grid against medium grid. It is seen 
that there is a reduction in GCIs with successive grid refinement, indi
cating the solution is reaching towards a grid-independent result. In 
addition, GCI32 at pressure monitor P3 is much larger than the ones at P1 
and P2, which means that medium grid performs well at P1 and P2, but 
leads to a relatively larger error at P3. Thus to obtain a convinced 
pressure value at P3, a fine grid might be necessary. 

After conducting the grid-independence test, the simulation of liquid 
sloshing using Concurrent Multi-Process Refinement method is carried 
out. Fig. 9 illustrates the snapshots of the liquid sloshing in the last surge 
period of the tank using multi-process grid, in which the grid size re
duces from the bottom to the free surface of the tank in three divided- 

linked processes. It is seen that within the area in Local Process B, the 
fine grid shows good performance in vortex and free surface evolutions. 
The vortexes induced by the baffle are still clear in direction and size 
although the baffle is relatively long, besides, new-small vortexes along 
with the rolling and breaking of the free surface can be captured which 
are not shown in Jung et al. (2012). In fact, the vortex and free surface 
evolutions in Jung et al. (2012) were relatively coarse and simple due to 
the reason of using a relatively coarse grid compared to the 
multi-process grid in this paper, which still showed good agreement 
with the experimental measurement and existing numerical results. 
However, the vortex in the finer grid and the violent rolling and 
breaking of the free surface surely have an important influence on the 
loads acting on the wall and baffle of the tank, for instance the com
parison of pressures in Fig. 8 shows that the finer grid is not only more 
precise according to the RSE and GCI but also on the depth of the 
amplitude (peak and trough) in one period of sloshing, which are 
induced by the vortex and free surface elevations. 

The pressure time histories of the multi-process grid at pressure 
monitors P1, P2 and P3 and the RSEs of the multi-process grid against the 
fine grid are given in Fig. 10. By comparing the pressure histories from 
the multi-process grid in Fig. 10-a and the fine grid in Fig. 8, it is seen 
that the multi-process grid shows good agreements with the fine grid on 
pressures. The RSEs of the multi-process grid against the fine grid at P1, 
P2 and P3 are merely 0.2%, 0.2% and 0.4% respectively, indicating that 
the relative standard error between multi-process grid using Concurrent 
Multi-Process Refinement method and the fine grid in the whole simu
lation area is small enough to be neglected. In the meanwhile, among the 
fine grid (subscript 1), multi-process grid (subscript 2) and medium grid 
(subscript 3), GCIs are calculated in Table 3, from which it is seen that 
GCIs of multi-process grid against fine grid are all smaller than 0.5%. 
Therefore, from view of both the vortex and free surface evolutions, and 
the pressure time histories, Concurrent Multi-Process Refinement 
method performs satisfactorily as a refinement method. Additionally, 
shown in Table 1, applying the multi-process grid reduced the compu
tational cost by more than half compared to the fine grid, which proves 
that Concurrent Multi-Process Refinement method balanced the accu
racy and efficiency at the same time. It should be clarified that when 
studying the sloshing loads on the side walls of the liquid tank and the 
sloshing loads on the vertical baffle are not focused, a medium grid is 
enough for the accuracy of simulation. However, when attention is paid 
on the sloshing loads on the vertical baffle, especially the loads near the 
upper end of the baffle, a fine grid or multi-process grid using Concur
rent Multi-Process Refinement method should be applied. 

4.2. Dam breaking flow slamming a vertical wall 

The dam breaking flow slamming an elastic vertical wall is widely 
used to validate FSI methods since the violent free surface movement 
and strong impact are involved. The case is designed similar to the ones 

Fig. 10. Pressure time histories for multi-process grid at pressure monitors P1, P2 and P3 (Left Panel); and the relative standard error of multi-process grid against fine 
grid (Right Panel). 

Table 3 
Error estimation on medium, multi-process and fine grids using GCI.  

Location Mean Pressure/Pa p GCI21 GCI32 

Fine Multi-Process Medium 

P1 86.3 86.2 85.4 6.42 <0.5% 1.6% 
P2 94.5 94.6 93.3 7.75 <0.5% 1.4% 
P3 572.8 573.0 590.5 13.63 <0.5% 4.0%  

Table 4 
Grid sizes and time steps in the dam breaking case.  

Simulation Case Grid size Time step Computational 
cost 

Coarse grid 0.008 m 0.0008s 0.25 h 
Fine grid 0.004 m 0.0004s 0.83 h 

Multi- 
process 

Main 
Process 

0.008 m 0.0008s 0.52 h 

Local 
Process 

0.004 m 0.0004s  

Previous 
literature 

Particle 
distance 

Maximum 
time step 

Computational 
cost  

Sun et al. 
(2015) 

0.004 m 0.0010s 1.00 h  

Zhang and 
Wan 
(2018) 

0.004 m 0.0005s Not reported   
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by Sun et al. (2015) and Zhang and Wan (2018), who used different 
MPS-FEM methods. A 0.1 m � 0.2  m water dam breaks and slams an 
elastic vertical wall 0.352 m away from it. The 0.352 m-high vertical 
wall is fixed at the lower end and free at the upper end. A pressure gauge 
PG is placed on the wall, 0.02 m from its lower end. Physical properties 
are chosen as: fluid density 1000 kg/m3, fluid kinematical viscosity 
0.000001145 m2/s, air pressure 101263.4Pa, acceleration of gravity 
9.81 m/s2, elastic modulus of wall 0.2 GPa, Poisson’s ratio 0.3, wall 
density 7860 kg/m3, wall thickness 0.006 m. 

In the fluid domain, three groups of grid sizes are applied, which are 
the coarse, fine and multi-process grids shown in Table 4, while in the 
structure domain, the elastic vertical wall is discretized into 61 ele
ments. Note that the fine grid case gives a fluid grid number of 1250, 
which is the same with the number of fluid particles used by Sun et al. 
(2015). The whole simulation time is 10s, and time step is chosen as 
0.0001s, small enough to capture the high-frequency vibration of the 
elastic vertical wall and to guarantee the Maximum Courant number ≪ 1 
for unknown fluid fields (John and Anderson, 1995). 

From the computation cost of the coarse, fine and multi-process grids 
in Table 4, it is seen that the fine grid case takes about 0.83 h of 
computational cost, which is over 3 times of the computational cost of 
the coarse grid case due to the smaller time step and larger number of 
grids. Compared to the CPU time of the simulation by Sun et al. (2015) 
which was 1 h, the computational cost of the fine grid case in this paper 
is smaller, since a monolithic FSI method is used in present study, while 
Sun et al. (2015) applied a partitioned MPS-FEM method. As explained 
in Section 3.4, the partitioned method is usually more computational 
expensive since iterations exist in both the fluid and structure domains. 
By using Concurrent Multi-Process Refinement method, the simulation 
time is further reduced from 0.83 h to about 0.52 h, indicating that 
Concurrent Multi-Process Refinement method is able to further improve 

Fig. 11. Snapshots of dam breaking flow slamming a vertical wall in Main Process and Local Process using Concurrent Multi-Process Refinement method.  

Fig. 12. Displacements at the free end and pressures at PG with different 
grid systems. 

Fig. 13. Comparisons of displacements at the free end and pressures at PG.  

H. Qin et al.                                                                                                                                                                                                                                      



Ocean Engineering 197 (2020) 106912

13

the efficiency of FSI simulation by localizing the FSI area and applying 
different time steps in multi-processes. 

Fig. 11 illustrates the snapshots of the dam breaking flow slamming 
event, from which it is seen that the computational domain is divided 
into Main Process and Local Process using Concurrent Multi-Process 
Refinement method. The area near the vertical wall is refined in Local 
Process to guarantee the accuracy of the FSI simulation, while the area 
far from the vertical wall is with a coarse grid system to accelerate the 
computation. As expected, Local Process gives good performance in the 
FSI area near the vertical wall, such as the water impinging, climbing, 

rolling, breaking and falling, while Main Process controls the flow 
behavior that is relatively far from the vertical wall without considering 
FSI. 

Fig. 12 gives the comparison of displacements at the wall free end 
and pressures at PG among the coarse, fine and multi-process grids, 
showing that the coarse grid relatively produces larger errors both in 
displacement and pressure, while the results of the fine grid and multi- 
process grid are almost identical. In order to validate the numerical 
methods, displacement at the free end and pressure at PG of present 
results are compared with the numerical results by Sun et al. (2015) and 
Zhang and Wan (2018). It is seen from Fig. 13-a that the displacement of 
present results agrees well with the one by Sun et al. (2015) and Zhang 
and Wan (2018), although there are some acceptable discrepancies. 
From Fig. 13-b, it is observed that there is satisfactory agreement of the 
fluid pressures at PG between present result and the result by Sun et al. 
(2015), however, the pressure was not given by Zhang and Wan (2018). 
Therefore, from both the displacement of the vertical wall and the fluid 
pressure on the wall, the present FSI method and Concurrent 
Multi-Process Refinement method are capable of producing good results 
compared with the previous literatures. Additionally, by using Concur
rent Multi-Process Refinement method, the computational cost can be 
further reduced than the original monolithic FSI method. 

Fig. 14 depicts the residual error and iteration number of Local 
Process of the multi-process simulation case in Table 4. It is seen that at 
about 0.2–0.25s when initial slamming happens, the residual error and 
iteration number are both relatively larger than average. However, the 
residual error decreases quickly with the iteration number, showing a 
concave decreasing function during one time step as can be seen from 
the logarithmic coordinate of Fig. 14-a. In the meanwhile, the iteration 
number decreases quickly with the simulation time and is stabilized 
between 1 and 5 after initial slamming as shown in Fig. 14-b. Therefore, 

Fig. 14. Residual error and iteration number of the multi-process simulation case.  

Fig. 15. Snapshot of three groups of Multi-Process refinement.  

Fig. 16. Displacements at the free end and pressures at PG with different Local Process.  
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it is proven that the present FSI method (SBMIM) and Concurrent Multi- 
Process Refinement method give good performance on convergence. 

Since one nature and purpose of Concurrent Multi-Process Refine
ment method is to reduce the area of localized monolithic FSI coupling 
in multi-scale problems, a proper choice of Local Process area becomes a 
key issue. In order to choose proper Local Process area, refinement study 
on the effect of Local Process area is carried out based on the multi- 
process refinement in Table 4. Three groups of Local Process selec
tions are applied, named as Local Process A, Local Process B and Local 
Process C. Here, Main Process and Local Process A are designed exactly 
the same with Main Process and Local Process in Table 4, while Local 
Process B halves Local Process A and Local Process C further halves Local 
Process B in the horizontal direction, as shown in Fig. 15. Particularly, 
area lengths in the horizontal direction of Local Process A, Local Process 
B and Local Process C are 0.12 m, 0.06 m and 0.03 m respectively. Grid 
sizes and time steps of the three local processes are selected the same 
with the ones of Local Process in Table 4, which are 0.004 m and 
0.0004s. All the other physical properties stay the same with the pre
vious choices. 

Displacements at the wall free end and pressures at PG obtained in 
Local Process A, Local Process B and Local Process C are shown in 
Fig. 16. On one aspect, it is observed that in the 1st half period of 
structural vibration, Local Process C gives smaller vibration period (thus 
higher frequency) than Local Process A and Local Process B. The reason 
lies in that Local Process C might be too small for the localized FSI 

simulation to accurately highlight the added mass induced by the strong 
coupling between the fluid and structure. On the other aspect, the vi
bration periods obtained in Local Process A and Local Process B are quite 
close, indicating that Local Process B might be enough for the accurate 
calculation of the added mass in the localized FSI simulation. 

Using the GCI method, the structural vibration frequency and 
maximum pressure at PG are deemed as the key variables both from the 
structure and fluid points of view. It should be mentioned that the 
structural vibration frequency here is limited within the 1st half period 
of the structural vibration, as the strong FSI process has already finished 
after water falling and free vibration dominates after the 1st half period, 
depicted in Fig. 11. Table 5 gives GCIs among Local Process A (subscript 
1), Local Process B (subscript 2) and Local Process C (subscript 3). The 
result shows that the convergence conditions of both key variables are 
monotonic as there are reductions in the GCIs of both key variables with 
successive grid refinement (GCI21 < GCI32), which indicates that the 
dependency of the simulation results on the grid size has been reduced 
and the solution is reaching towards the grid-independent solution. It is 
also shown that GCI21 calculated between Local Process A and Local 
Process B is rather small in view of both key variables, in the meanwhile, 
GCI32 calculated between Local Process B and Local Process C is rela
tively larger. As such, GCIs among different local processes prove the 
conclusion that Local Process B might be enough for the localized FSI 
simulation but Local Process C might be too limited for the accurate 
calculation of the added mass in the strong coupling between the fluid 

Table 5 
Error estimation on different local processes using GCI.  

Vibration frequency in the 1st half period/Hz p GCI21 GCI32 

Local Process A Local Process B Local Process C 

0.988 0.995 1.034 6.40 <0.5% 2.2% 

Maximum pressure at PG/Pa p GCI21 GCI32 

Local Process A Local Process B Local Process C 

3887.3 3929.5 4015.1 3.59 <0.5% 3.5%  

Fig. 17. Free surface elevations of generated freak wave at Gauge 1, Gauge 2 and Gauge 3 (Top Panel), and the free surface snapshot before freak wave reach the 
platform (Bottom Panel). 

Table 6 
Grid sizes and time steps in three different processes of green water impact.  

Process Grid 
size 

Time step Simulation 
time 

Computational cost 

Main Process 0.020 m 0.00200s 20s 0.8 h of CFD 
simulation 

Local Process 
A 

0.010 m 0.00100s 1s 0.1 h of CFD 
simulation 

Local Process 
B 

0.005 m 0.00005s 1s 0.9 h of FSI simulation  

H. Qin et al.                                                                                                                                                                                                                                      



Ocean Engineering 197 (2020) 106912

15

Fig. 18. Snapshots of the green water impact caused by freak wave in Main Process, Local Process A and Local Process B using Concurrent Multi-Process Refine
ment method. 
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and structure. It is suggested by the authors that Local Process selection 
is suitable when GCIs of key variables are smaller than 1%, so that the 
strong coupling between the fluid and structure (e.g. the added mass) 
can be fully considered. 

5. Application: Green water slamming induced by freak wave 

Freak wave, also called as rogue wave or monster wave, is a kind of 
extreme wave that has led to many destructions and accidents in recent 
decades (Kjeldsen, 1984; Lavrenov, 1998; Dysthe et al., 2008; etc.). 
When marine structures encounter with freak waves, green water and 
overtopping events are the most commonly observed consequences 
which might cause severe impact on superstructures (Qin et al., 2017a, 
2017b, 2017c). Therefore, it is necessary to study the green water 
impact issue caused by freak waves, especially when hydroelastic effects 
cannot be neglected (Faltinsen et al., 1997). However, several problems 
are raised on the accuracy and efficiency balance of FSI simulation of 
this issue. Firstly, the relatively long simulation time of wave generation 
and propagation doesn’t cohere with the transient simulation time of 
FSI. Secondly, the grid size of wave simulation which requires a rela
tively coarse grid to reduce computational cost doesn’t cohere with the 
grid size of local FSI simulation which requires a fine grid to guarantee 

accuracy. Thirdly, the small time step required by accurate calculation 
of high-frequency structural vibration doesn’t cohere with the relatively 
large time step required by wave simulation, especially for monolithic 
FSI method. Lastly, solving the monolithic FSI equation in the whole 
domain brings unnecessary difficulty and costs too much time. 

In this section, the green water impact on deck-house structures 
caused by freak waves are simulated using Concurrent Multi-Process 
Refinement method to conquer the problems listed before. This case 
shows the performance of Concurrent Multi-Process Refinement method 
in dealing with practical multi-scale ocean engineering problems 
including localized FSI simulations with high-frequency structural 
vibrations. 

A numerical wave tank is built of 10 m in length, 1 m in height and 
0.7 m in water-depth, where three gauges are placed 3 m (Gauge 1), 4 m 
(Gauge 2) and 5 m (Gauge 3) from the wave-making boundary. Freak 
waves based on Peregrine breather of nonlinear Schr€odinger equation is 
applied (Akhmediev et al., 2009; Chabchoub et al., 2012; Hu et al., 
2015; etc.), which is to reach the maximum crest at Gauge 2 at 10s with 
carrier wave number k ¼ 2:223rad=m and amplitude A ¼ 0:1m. Phys
ical properties within the fluid domain are chosen as: fluid density 1250 
kg/m3, fluid kinematical viscosity 0.000001145 m2/s, air pressure 
101263.4Pa, acceleration of gravity 9.81 m/s2. Before simulations of the 
interaction between freak wave and the platform, a verification on freak 
wave generation is conducted with the grid size of 0.02 m and time step 
of 0.002s. The numerical results of free surface elevations at Gauge 1, 
Gauge 2 and Gauge 3 are compared with the theoretical results in 
Fig. 17-a, showing satisfactory agreement. 

The platform structure which is 1 m in length and 0.2 m in height is 
fixed 4 m from the wave-making boundary and 0.08 m above the still 
water line. On the platform, a 0.2 m-long clamped-clamped vertical wall 
is placed at the middle representing the deck-house wall, which is 
treated as a 0.001 m-thick elastic structure with elastic modulus 210 
GPa, Poisson’s ratio 0.3 and material density 7860 kg/m3. Three pres
sure monitors P1, P2 and P3 are located at the bottom, middle and top of 
the vertical wall. 

The green water impact simulation is divided into three processes 
using Concurrent Multi-Process Refinement method, namely Main Pro
cess, Local Process A and Local Process B, grid sizes and time steps of 
which are given in Table 6. The vertical deck-house wall is discretized 
into 40 Euler beam elements. It should be noticed that the time step in 
Local Process B is 0.00005s, which is 1/20 of the time step in Local 
Process A due to the reason that the coupled FSI equation of Eq. (2.16) is 
solved in Local Process B. As mentioned before, in order to capture the 
high-frequency vibration of the elastic steel structures, solution of the 
monolithic FSI equation requires a much smaller time step compared to 
the ones in Main Process and Local Process A. The total simulation time 
of freak wave generation and propagation in Main Process is 20s, while 
the simulation times in Local Process A and Local Process B are both 1s. 

Before the green water event occurs, the crest shape of the freak 
wave at 9.40s is shown in Fig. 17-b, indicating a nonlinear wave crest 
with a steep front and a gentle back. From 9.92s to 10.78s in which 
period the green water event lasts, the free surfaces and velocity vectors 
(black arrows) in Main Process, Local Process A and Local Process B are 
illustrated in Fig. 18. It is seen that with the refinement of multi- 
processes, the large-scale CFD wave simulation and the small-scale FSI 
simulation are well combined using Concurrent Multi-Process Refine
ment method. Nonlinear behaviors of fluid climbing, rolling, breaking 
and splashing are fully simulated in the small-scale FSI simulation in 
Local Process B, leading to more convincible loads on the elastic struc
ture, and thus a more reliable hydroelastic response. Moreover, the 
small time step 0.00005s applied to solve the monolithic FSI equation is 
restricted within Local Process B, which significantly reduces the 
computational cost. 

By the comparison among one-process, two-processes and three- 
processes, performance of Concurrent Multi-Process Refinement 
method can be seen from a series of contrast simulation tests listed in 

Table 7 
Comparison of computational cost.  

Process Grid 
size 

Time step Simulation 
time 

Computational cost 

Main Process 0.005 m 0.00050s 20s >100 h of FSI 
simulation 

Main Process 0.020 m 0.00200s 20s 0.8 h of CFD 
simulation 

Local Process 
A 

0.005 m 0.00005s 1s 2.3 h of FSI simulation 

Main Process 0.020 m 0.00200s 20s 0.8 h of CFD 
simulation 

Local Process 
A 

0.010 m 0.00100s 1s 0.1 h of CFD 
simulation 

Local Process 
B 

0.005 m 0.00005s 1s 0.9 h of FSI simulation  

Fig. 19. Pressure time histories (Left Panel) and nodal displacements 
(Right Panel). 

Table 8 
Grid sizes and time steps in four different processes.  

Process Grid size Time step Simulation 
time 

Computational cost 

Main Process 0.020 m 0.002000s 20s 0.8 h of CFD 
simulation 

Local Process 
A 

0.0100 
m 

0.001000s 1s 0.1 h of CFD 
simulation 

Local Process 
B 

0.0050 
m 

0.000500s 1s 0.2 h of CFD 
simulation 

Local Process 
C 

0.0025 
m 

0.000025s 1s 1.1 h of FSI 
simulation  
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Table 7. It is seen that directly applying a fine grid in one Main Process to 
guarantee the accuracy of local FSI simulation is computational expen
sive with over 100 h of simulation. By using a two-process division, 
computational cost can be reduced to 0.8 h of wave simulation and 2.3 h 
of FSI simulation, and thus a total cost of 3.1 h. However, the compu
tational cost of using two-process division still overruns the cost of using 

three-process division which is 1.8 h, consisting of 0.8 h of wave 
simulation and 0.1 h of green water simulation and 0.9 h of FSI simu
lation. Therefore, conclusion could be drawn that on condition of a 
reasonable division, Concurrent Multi-Process Refinement method im
proves the computational efficiency by applying more processes 
concurrently. 

The pressure time histories at P1, P2 and P3, and displacements of 
node 11, node 21 and node 31 of the wall are given in Fig. 19, from 
which the hydroelastic effects can be clearly observed through the os
cillations of the pressures and displacements. As a result of FSI, vibration 
frequency of the vertical wall would be changing overtime with the 
impact of on-deck water. By using a Fast Fourier Transform (FFT), the 
vibration frequency of displacements and oscillation frequency of 
pressures are obtained, which vary from 37 Hz to 133 Hz, corresponding 
to a vibration period from 0.0270s to 0.0075s. From the lowest vibration 
and oscillation period, the reason of using a much smaller time step in 

Fig. 20. Snapshots of the green water impact caused by freak wave in Local Process A, Local Process B and Local Process C using Concurrent Multi-Process 
Refinement method. 

Fig. 21. Pressure time histories (Left Panel) and nodal displacements (Right Panel).  

Table 9 
Ratio between the added mass and the object mass.  

Simulation 
case 

Object Object mass 
(kg/m) 

Maximum added 
mass (kg/m) 

Radded 

Section 4.2 Vertical wall 14.34 25.79 1.80 
Section 5 Vertical Wall 1.57 18.43 11.74 

Horizontal 
deck 

0.94 2.06 2.19  
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FSI simulations, which is 0.00005s in Local Process B (1/20 of the time 
step in Local Process A), can be reasonably explained as that only such 
small time step is able to capture the high-frequency structural vibra
tions and pressure oscillations. In other words, the usage of a much 
smaller time step in FSI simulations is determined by the high sampling 
frequency requirement of solving the monolithic FSI equation. However, 
in the fluid domain that is far away from the FSI area, the sampling 
frequency requirement of solving pure-CFD is much smaller, leading to 
the tolerance of using much larger time steps in Main Process and Local 
Process A according to the Courant number criterion. 

Further considering the FSI problem of an elastic horizontal deck 
added at top of the deck-house wall, a four-process division is utilized by 
Concurrent Multi-Process Refinement method. The 0.08 m-long and 
0.0015 m-thick horizontal deck is fixed at the right end and free at the 
left end, which is discretized into 32 Euler beam elements. Three pres
sure monitors P4, P5 and P6 are located at the right end, middle point and 
left end of the horizontal deck. 

By further dividing Local Process B, the simulation is composed of 
Main Process, Local Process A, Local Process B and Local Process C, thus 
the FSI simulation solving the monolithic FSI equation is carried out in 
Local Process C. Grid sizes and time steps in Main Process, Local Process 
A, Local Process B and Local Process C are listed in Table 8. Snapshots of 
the events in Local Process A, Local Process B and Local Process C are 
illustrated in Fig. 20, from which the impact phenomena including vi
olent fluid rolling, breaking, falling and splashing can be observed. 

The pressure time histories at P4, P5 and P6, and displacements of 
node 1, node 17 and node 33 of the deck are given in Fig. 21. By applying 
the FFT on displacement time histories, it is seen that the vibration 
frequency of the horizontal deck varies from 110 Hz to 196 Hz, corre
sponding to vibration period from 0.0091s to 0.0051s. From the lowest 
vibration period, it is seen that the sampling frequency requirement of 
the horizontal deck becomes even higher than the one of vertical wall 
due to a larger structural rigidity. Therefore, the simulation time step in 
solving the monolithic FSI equation should be further reduced, which is 
0.000025s in Local Process C (1/2 of the time step in Local Process B). As 
a result, the computational cost using a four-process division is increased 
to 2.2 h, consisting of 0.8, 0.1 and 0.2 h of CFD simulations in Main 
Process, Local Process A and Local Process B, and 1.1 h of FSI simulation 
in Local Process C. 

When dealing with multi-scale FSI problems such as the freak wave 
propagates, overtops in large-scale and causes slamming in small scale, 
the computational cost is usually high using the traditional monolithic 
FSI and refinement method. By reasonable division of the fluid domain, 
Concurrent Multi-Process Refinement method is able to save computa
tional cost through multi-grid sizes and multi-time steps to multi- 
processes. As such, the scale differences between large-scale problems 
such as the wave propagation and overtopping, and small-scale prob
lems such as the green water impact are well handled, leading to a well- 
balanced monolithic FSI simulation in accuracy and efficiency. How
ever, as mentioned in Section 3.4 and Section 4.2, the division of multi- 
processes should be carefully chosen when dealing with multi-scale FSI 
problems to avoid under estimation of FSI effects, the added mass in 
particular. 

6. Conclusions 

In this paper, a Concurrent Multi-Process Refinement method 
applied in two-dimensional fluid-structure interaction problems is 
developed, which divides the FSI simulation into concurrent multi- 
processes with different grid sizes and time steps. As an important 
supplement of the SIMPLE-based monolithic implicit method (SBMIM) 
initially proposed by Hu et al. (2016), Concurrent Multi-Process 
Refinement method solves the accuracy and efficiency problems 
encountered during the implementation of the monolithic FSI method in 
dealing with multi-scale FSI problems and in predicting high-frequency 
structural vibrations. 

By using the file mapping provided in Visual Basic, the split multi- 
processes are linked in pairs. In a pair of processes, data of velocity 
and pressure variables are transmitted between Main Process and Local 
Process through Fluid-Entry Boundary and Dummy Grid with proper 
interpolations and time advance strategy. The multi-grid sizes in Main 
Process and Local Process localize the FSI area so that the monolithic FSI 
equation can be solved in a limited scale, saving the computational cost 
induced by solution of the monolithic FSI equation. The multi-time steps 
in Main Process and Local Process balance the accuracy and efficiency 
temporally, especially under condition that a high sampling frequency is 
required to capture the high-frequency structural vibrations of large 
rigidity structures. 

Two refinement study cases are given in the paper using the GCI 
method, including a case of the liquid sloshing in a baffled tank and a 
case of the dam breaking flow slamming a vertical wall. The liquid 
sloshing case shows the performance of Concurrent Multi-Process 
Refinement method in CFD simulations with nonlinear free surface 
evolutions, and gives an error estimation on the coarse, medium, fine 
and multi-process grids. The dam breaking case compares the results by 
present methods and by previous literatures, and gives an error esti
mation on different selected Local Process areas. Simulations of the 
green wave impact caused by a freak wave is conducted to show the 
practical application of Concurrent Multi-Process Refinement method in 
multi-scale FSI problems with high-frequency structural vibrations using 
monolithic FSI methods, from which it is seen that the present method 
can deal with ocean engineering problems composed of large-scale CFD 
issues such as the wave propagation and small-scale FSI issues such as 
the on-deck wave slamming. In addition, it is known that FSI coupling 
problems can well be explained by the fluid added mass in relation to the 
object mass, the ratio of which can determine whether a strong coupling 
is required or whether a weak coupling suffices. By using the FFT 
method, Table 9 gives the object mass, maximum added mass, and Radded 
(the ratio between maximum added mass and object mass), from which 
it can be observed that the added mass effect is quite severe in all the 
three FSI coupling simulations in this paper. This proves that the 
monolithically strong-coupled coupling method applied in this study is 
necessary and is able to give good results in evaluating the added mass 
effects. 

The main innovation of the paper is the development of Concurrent 
Multi-Process Refinement method, which is based on a SIMPLE-based 
monolithic implicit method used for strong coupling FSI simulations. 
The novelty of Concurrent Multi-Process Refinement method lies in that 
it provides a solution of balancing the accuracy and efficiency in 
monolithic FSI methods, especially in dealing with multi-scale FSI 
problems and high-frequency structural vibrations. In addition, Con
current Multi-Process Refinement method shows its great advantages in 
CFD/FSI simulations using low-cost computational facilities, making it 
possible for researchers to conduct time-costing monolithic FSI simula
tions using ordinary personal computers. Further study might be focused 
on the development of Concurrent Multi-Process Refinement method 
using adaptive meshing and time step, and the potential of parallel 
computation in multi-CPUs. 
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